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Phase-Shift-Based Time-Delay Estimators for
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Abstract—Time-delay estimation is important in a wide range
of applications in oceanic engineering. In this paper, we present
a novel time-delay estimation algorithm based on maximum like-
lihood theory for the case that the measurements are corrupted
by colored or nonuniform zero-mean Gaussian noise. It turns out
that the likelihood function associated with the problem is highly
oscillatory, and we propose a computationally efficient technique
to maximize this function. Our algorithm first obtains an initial
estimate based on a smooth approximate cost function, and then
refines this estimate based on the true cost function. Simulation
results show that our estimator outperforms a traditional phase-
shift based estimator, and that the estimation error approaches the
Cramér–Rao bound (CRB) when the signal-to-noise ratio (SNR)
increases without bound.

Index Terms—Supercavitation, acoustic sensors, time-delay esti-
mation, maximum likelihood, phase-shift method.

I. INTRODUCTION

T HIS paper deals with time-delay estimation using acoustic
sensors. The application, that has served as the main mo-

tivation for this work is the problem of measuring cavity thick-
ness for underwater supercavitating vehicles (however, the re-
sults of this paper can also be applied directly to many other
applications such as proximity barrier detection and fluid level
measurement [1], [2]). In fact, the maximum speed of the sub-
merged vehicles, by using traditional underwater techniques, is
limited up to about 80 m/h. This limitation, however, is being
broken by a physical phenomenon calledsupercavitation, which
makes it possible for underwater vehicles to travel at hundreds
of miles per hour [3], [4]. The core of this technique is to sur-
round the moving object with an envelope of gas so that the
contact area between the liquid and the vehicle surface is mini-
mized, and as a consequence the viscous drag is reduced drasti-
cally. The feasibility of such vehicles is dependent mainly on the
ability to actively control the shape and quality of the gaseous
cavity when the vehicle maneuvers at high speeds, and hence
an efficient cavity sensing technique is very important. Due to
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the hard acoustic boundary at the gas/water interface, acoustic-
based cavity thickness measurement methods are expected to be
superior to other possibilities such as electromagnetic or laser-
based methods.

Consider a signal transmitted from an ultrasonic transducer.
The emitted signal propagates through the transmission medium
(for instance, air or water) and is reflected by the boundary (or a
suitable reflector). The reflected signal is received by a receiving
transducer (that may be the same as the transmitting transducer).
The time-delay of the signal propagating from the transmitter to
the receiver is measured and converted into a value proportional
to the distance.

Numerous techniques including the pulse-echo and the
continuous wave (CW) measurement techniques have been
developed for performing the time-delay measurement [5]–[7].
The so-calledpulse-echo methodis based on the estimation
of the time-delay between the moment of transmission and
the time-of-arrival of the reflected wave. To measure a small
distance and to get a high accuracy of the estimate, the sound
pulse must be extremely short. However, owing to the high
quality factors of the transducers, most existing ultrasound
transducers can only generate the pulses with long ringing
tails [8]. Therefore, when using a conventional ultrasound
transducer, the pulse-echo measurement technique is not useful
for close proximity measurements (that is, when the distance
between the sensor and the reflector is less than 5 cm).

Another class of distance measurement methods is based on
continuous sound wave (CW) generation techniques and over-
comes the distance restriction of the conventional pulse-echo
method. These methods require that the transducer generate ul-
trasound continuously and receive the reflected signal simulta-
neously. The most widely used method within the class of CW
measurement techniques is called the impedance or amplitude
method, which can be analyzed similar to the Fabry-Perot prin-
ciple known in optics [9]. In the space between the sensor and
the reflector, the emitted and reflected sound waves interfere
with each other and a standing wave pattern is generated. The re-
ceived signal amplitude is maximal or minimal when the waves
are in resonance or antiresonance, respectively. The distance
between the sensor and the reflector is obtained by measuring
the frequency difference between two neighboring resonance
peaks or notches. Another CW-based method, referred to as
thephase-shift method, is much simpler and faster since it only
requires two measurements of a phase-shift on two different
working frequencies. This method is widely applied in optics
[10]–[12]. A traditional estimator for the phase-shift method
is described in [6] and is based on the fact that given the two
different working frequencies, the difference between the two
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phase-shifts is proportional to the time-delay. However, it turns
out that this estimator is not optimal when the signal is known to
have a real-valued amplitude. Furthermore, this estimator does
not take the noise into account in a proper way.

In this paper, we consider the phase-shift method in the case
when the amplitude of the signal is nonnegative unknown, and
the measurements are corrupted by colored or nonuniform
Gaussian noise. A new time-delay estimator based on a max-
imum-likelihood approach is derived. However, this estimator
requires the solution of an optimization problem whose objec-
tive function is highly oscillatory. Inspired by a related work
in [13], we propose an approach to obtain an initial time-delay
estimate by assuming that the amplitude of the reflected signal
is complex-valued and then to refine the initial estimate based
on the true cost function. A computationally efficient algorithm,
referred to as the direct matching method (DMM), is presented
to obtain the refined estimate. As shown in this paper, our al-
gorithm performs much better than the estimator in [6] and the
root-mean-squared errors (RMSEs) of the parameter estimates
of the new method approach the corresponding Cramér-Rao
bounds (CRBs) when the signal-to-noise ratio (SNR) increases
without bound. We also show that for the case in which the
amplitude is no longer real-valued, but complex-valued with a
small phase angle (i.e., in the case of a small model mismatch),
the new method can still perform better than the traditional
method for a low to moderate SNR.

II. PROBLEM FORMULATION

Assume that the transmitted ultrasonic signal is a sinusoid:

(1)

where is the transmitted frequency and is the initial phase.
When the sound waveform is normally incident on the interface
between two media, the wave is partly reflected and partly trans-
mitted into the second medium. The reflection coefficient is de-
fined as , where is the pressure of the incident
wave and is the pressure of the reflected wave. This can also
be expressed as , where the and

are the characteristic impedances of the transmission media
[14]. When the impedance of the second medium is much larger
than that of the first medium, for instance, when the aerial sound
waves impinge onto a water surface,becomes equal to one,
which implies that the reflected signal is an exact replica of the
incident signal. Hence, in this case, the signal received by the
transducer can be written as

(2)

where is the round-trip time-delay between the sensor and the
reflecting boundary and is the amplitude, which is consid-
ered to be a nonnegative unknown, andis induced by “half
wavelength loss” due to the acoustic hard boundary. Therefore,
the phase-shift between the transmitted and received signal due
to the time-delay is . In order to measure this phase-shift,
standard IQ processing is performed on the received signal. This
means that is demodulated with the in-phase and quadra-
ture components of and

, respectively. The demodulated signals are passed through
low-pass filters and the real and imaginary parts of
are obtained by measuring the output amplitudes of the two
low-pass filters.

Assume that subsequent and independent measurements
are taken using the frequency. Then each measurement value
can be modeled as

(3)

where we assume that is a zero-mean circular symmetric
complex white (with respect to) Gaussian random variable
with variance . Assume further that a corresponding set of

independent measurements are obtained by transmitting a
signal with the known frequency (without loss of generality,
we assume ):

(4)

where is Gaussian noise with variance. We will in gen-
eral assume that the noise is nonuniform so that . This
modeling accounts for the possibility that the noise level is dif-
ferent at different frequencies, a situation that can, for example,
arise from hardware artifacts. Furthermore, we will allow for
the possibility that and are correlated, a situation
that could arise, for instance, if the two measurements (at time

) on frequency and are taken simultaneously using two
transducers. We will see that this data model leads not only to
a robust estimation algorithm, but is also mathematically effi-
cient.

The data model can be expressed using matrix notation as
follows. Define the vector of measurements

(5)

where denotes the transpose, let

(6)

be a vector containing the noise samples and let

(7)

Then the data model in (3) and (4) can be written in a matrix
form as

(8)

where are independently and identically distributed
zero-mean circularly symmetric complex Gaussian random vec-
tors with an unknown positive definite covariance matrix

(9)

and here the complex correlation coefficientis defined as

(10)

Hereafter is the expected value ofand denotes the
complex conjugate. The problem of interest in our paper is to
estimate from .
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III. T IME DELAY ESTIMATION

A. Maximum Likelihood Estimator

The log-likelihood function of is proportional to (within
an additive constant):

(11)

where denotes the determinant of a matrix, denotes
the conjugate transpose, and stands for the trace of the
matrix.

It is easy to show that the matrix that maximizes (11) is
(see, e.g., [15], [16])

(12)

Insertion of (12) into (11) shows that maximizing (11) is equiv-
alent to minimizing

(13)

where

(14)

Let

(15)

and

(16)

Then can be written as

(17)

With this notation, the cost function in (13) can be written as

(18)

where

(19)

and where we have used the fact that
whenever the dimensions of and are conformable

[17]. Hence, maximizing is equivalent to minimizing

(20)

which is a highly nonlinear optimization problem.

Before we proceed, let us remark on the following two facts.
First, the data model in (8), the related optimization problem
of maximizing (11) and its solution are similar to those ob-
tained for the amplitude and phase estimation (APES) filter [18].
Second, it is evident from (20) that the exact ML estimator of

reduces to a simple nonlinear least square (NLS) cost
function of pre-whiteneddata. Note, however, that in (19)
is not the ML estimate of .

We will consider three different cases:is complex-valued,
is real-valued and is nonnegative, respectively. Consider first
the case where is an unknown complex-valued scalar. Then
minimizing with respect to and yields the estimates
of and , respectively, as

(21)

(22)

Next, consider the case of a real-valued. Minimizing
with respect to and yields

(23)

(24)

where is the real part of . Finally, consider the case when
is a nonnegative unknown. Minimizing for a fixed

with respect to yields

(25)

where is the unit step function:

if
if

(26)

Insertion of (25) into (20) gives

(27)

Once we have obtained , the corresponding is obtained
from (25) as .

According to the parsimony principle [19], ifis real-valued,
the estimates obtained by maximizing and should
be more accurate than those obtained by maximizing due
to the different constraints on. Although (23) and (27) are
simple one-dimensional search problems, the objective func-
tions and are highly oscillatory and have numerous
closely spaced local maxima which make it very difficult to find
the global maximum. In the section below, we present a fast al-
gorithm to cope with these optimization problems.
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B. Estimation Algorithm

To solve the optimization problems in previous section, we
first introduce the following notation. Let

(28)

(29)

(30)

(31)

where is defined in (19) and is the phase of .
1) Maximization of : Consider first the optimization

problem for the cost function , which after some straight-
forward algebra can be written as

(32)

where

(33)

(34)

(35)

(36)

Differentiating with respect to and setting the derivative
to zero yields

(37)

Let

(38)

(39)

(40)

Then the solution of (37) is

arcsin (41)

If it is known a priori that , the estimate of
is

if

if
(42)

Note that in the special case that it is known that where
is the identity matrix and , the estimator in (42)

can be simplified to

if

if
(43)

which is the same expression as for the traditional phase-shift
method in [6].

2) DMM: Although a closed-form solution to maximizing
with respect to can be found, it is less accurate than

the solution obtained by maximizing and , if is
real-valued. However, it is difficult to maximize and
directly due to the fact that both of them are highly oscillatory
with being even nonsmooth.

In this paper, we propose to maximize the cost function
by first obtaining an initial estimate , and then refine it based
on or respectively. Our algorithm, which doesn’t
require a search through the parameter space of, is described
below and will be called the DMM algorithm.

Rewrite the cost function as

(44)

where

(45)

and

(46)

It can be noted that the denominator of contains a sinusoid
with (low) frequency and that is highly oscilla-
tory with an oscillation frequency somewhere betweenand

. Therefore, the cost function is highly oscillatory. Dif-
ferentiating with respect to yields

(47)

Next, we expand around to a first-order approxima-
tion and find the solution to the equation , which cor-
responds to the local maximum of around . A Taylor
series expansion of around yields to a second-order
approximation

(48)

where

(49)

(50)

and

(51)
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Since is nonnegative, we have the following approximation
for high SNR:

(52)

where

(53)

with denoting rounding to the nearest integer. Note that the
information that is used explicitly here. In a small range
around , (52) yields the following approximation:

(54)

and

(55)

Then and can be expanded in their first-order ap-
proximations around as

(56)

and

(57)

where

(58)

(59)

(60)

(61)

where

(62)

Therefore, around can be approximately expressed as

(63)

Simplifying (63), neglecting the second-order term of ,
and setting it to zero, we obtain the refined solution, as shown
in (64) at the bottom of the page, where

(65)

and

(66)

As a final remark, we note that if it is known a priori that
, i.e., and , and if the SNR is high, i.e.,

, (64) can be simplified to

(67)

Equation (67) can be interpreted as a weighted summation of
the two estimates of obtained via and separately.

The steps of the DMM algorithm are summarized as follows:

1) Estimate via (19). Invert to obtain and [see
(28)].

2) Obtain an initial estimate of via (42).
3) Estimate and via (53).
4) Compute via (49)–(51) and

(58)–(62).
5) Obtain the final estimate via (64).
Once the final estimateis obtained, computing the estimate
is straightforward via (24).
3) Analysis of Model Errors:In practical measurement sce-

narios, due to the complex measurement environment and in
particular the nonideal rigid wall reflection and inhomogeneities
of the transmission media, it may not be entirely correct to
model as a nonnegative number. In fact, it can be argued
that should be modeled as a complex-valued number

where is a small phase angle. In this case, the esti-
mate , which is obtained by assumingis nonnegative,
will be biased due to the model mismatch. It can be shown
that for the special case in (67), the bias and the
mean-squared errors (MSE) of the estimate are

(68)

and

(69)

It is clear from the above equations that both and
increase as increases.

IV. NUMERICAL EXAMPLES

In this section, we present several computer simulations to il-
lustrate the performance of our proposed algorithm. The perfor-
mance of our algorithm is compared to the Cramér-Rao bound

(64)
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Fig. 1. Comparison of the cost functionsc (�); c (�) andc (�) for different assumptions on the signal amplitude�. No noise is present. True time-delay is
1:67� 10 s. (a), (b)� is nonnegative, three cost functions share same global maximum. (c)� is complex-valued, the global maximum ofc (�) deviates away
from the true location of� .

(CRB), which gives the minimum attainable variance for any
unbiased estimator. The CRB for our problem is derived in Ap-
pendix A. In the simulations below, we use

kHz, kHz, s (corre-
sponding to 0.028 m if the sound speed is 340 m/s). The RMSE
of each estimate is obtained by 500 Monte Carlo trials and the
SNR is defined as .

Fig. 1 illustrates the cost functions and . As
shown in Fig. 1(a) and (b), and share the same
global maximum if is nonnegative. Note that both and

are highly oscillatory, and also that has many non-
differentiable points. On the other hand, is the envelope
of and and is in fact quite smooth. It is expected that
maximizing or can yield a much more accurate es-
timate than maximizing , due to the sharper peaks of
or . Moreover, since has more closely spaced local
maxima than , it is intuitively expected that is more
sensitive to noise in a certain SNR range than is. If is
complex-valued, as shown in Fig. 1(c), the global maxima of

and deviate from the true location of (for sim-

plicity, only is shown in this figure). Hence, the estimates
based on or will be biased due to the model mis-
match.

Fig. 2(a) illustrates the RMSEs of the different methods for
the estimates of. The noise covariance matrix used here is

and five different methods are compared. The first is called
“C1” and uses the closed-form solution in (42) to maximize cost
function . The second and the third methods are based on
maximizing and by a 1-D search method, and are
referred to as “C2” and “C3,” respectively. The 1-D search is
performed in two steps, with an initial estimate via (42), fol-
lowed by a fine search using the function in MATLAB.
The fourth is “C3 (White),” which is a special case of C3, where
the is set to an identity matrix, that is, we assume the noise
is white. The last method is the DMM given by (64) [(67) is not
used in any of our simulations]. It can be noted that C1 cannot
approach the real CRB even when the SNR goes to infinity.
However, both C2, C3, and DMM approach the real CRB when
the SNR increases. Note that the threshold effect for C3 and
DMM occurs earlier than for C2, which is intuitively expected
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Fig. 2. Comparison of the RMSEs and CRBs for estimating (a)� ; (b) � when the signal amplitude is assumed to be complex-valued (C1), real-valued (C2), and
nonnegative (C3). The noise covariance matrix isQ = � I.

Fig. 3. Comparison of the RMSEs and CRBs for estimating� when the
signal amplitude is assumed to be complex-valued (C1), real-valued (C2), and
nonnegative (C3). The noises of the two channels are correlated with each
other and have different variances.

since both C3 and DMM use the information thatis nonneg-
ative. Note also that the performances of C3, C3(White) and
DMM are almost the same, despite the fact that C3 and DMM
do not take advantage of the prior knowledge of the noise. In
other words, the robustness against the colored or nonuniform
noise offered by our data model and algorithm comes at a neg-
ligible cost (or rather a negligible performance loss in the case

). The reason for this is related to the fact that our
estimation problem isdecoupledin the sense that the Fisher in-
formation matrix is block diagonal (cf. Appendix A). Fig. 2(b)
shows the corresponding estimates of.

Fig. 3 illustrates the RMSEs of the different methods for
the estimates of when the noise covariance matrix is

where . Note that the per-
formance of DMM is close to that of C3 and approaches the real
CRB as the SNR increases. If the information ofis not used,

as shown by C3 (white), there is a gap of 8 dB from the real
CRB, no matter how high the SNR is.

As a further illustration of the robustness of our algorithm,
Fig. 4(a) shows the performance of the C3 and DMM as a func-
tion of the absolute value of the correlation coefficientby
fixing the dB, and . The
figure shows that both C3 and DMM are close to the real CRB,
however, C3 (White) deviates from the real CRB whenap-
proaches unity (i.e., when the noises in the two channels become
highly correlated). Fig. 4(b) shows the performance of thees-
timators as a function of the ratio of the two variances
by fixing dB and . It can be noted that C3
and DMM can still achieve the real CRB, whereas C3 (white)
deviates from the real CRB when the ratio increases. The inter-
pretation of this is that our estimator has ability to estimate the
noise level on the two different frequencies, and to combine the
measurements optimally taking the different noise levels into
account.

From Figs. 3 and 4, we can see that our new estimator has the
ability to adapt to an unknown noise model. Both C2, C3, and
DMM can achieve the real CRB as long as the SNR is above
a certain threshold. However, DMM is computationally more
efficient than C2 and C3 since it does not require any search.

Finally, in Fig. 5 we illustrate the performance of DMM when
is complex-valued with a small phase angle. The noise covari-

ance matrix is . Due to the model mismatch, our esti-
mates are biased, and can therefore not approach the real CRBs
as the SNR increases. However, if the phase angleis small
and the SNR is low to moderate, which means that the estima-
tion error caused by the noise is larger than the constant bias
due to the model mismatch, DMM still performs better than the
traditional method. When the SNR increases, the constant bias
caused by the model mismatch becomes dominant compared to
the error caused by the noise, and the traditional method out-
performs DMM. Note that the RMSE of for the traditional
method is lower than the corresponding CRBs at the low SNRs,
which is due to the fact that it is a biased estimator.
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Fig. 4. Comparison of the RMSEs and CRBs for estimating� . (a) As a function of the absolute value of� with arg(�) = �=2. (b) As a function of� =� with
� = 0. The signal amplitude is assumed to be nonnegative andSNR = 35 dB.

Fig. 5. Comparison of the RMSEs and CRBs by using DMM to estimate (a)� and (b)�. Here the phase angle of� is 0 , 1 , 2 , 4 , respectively. The noise
covariance matrix isQ = � I.

V. CONCLUSION

In this paper, we have presented a new time-delay estimator
for the phase-shift method. We have considered the case when
the amplitude of the signal is nonnegative unknown and the mea-
surements are corrupted by Gaussian noise with unknown co-
variance. To deal with the induced optimization problem, whose
cost function is highly oscillatory, we propose a method called
DMM that first finds an initial estimate of the unknown param-
eter by maximizing a smoother cost function, and then refines
this estimate based on the true cost function. The RMSEs of the
estimates obtained by using our new algorithm approach the cor-
responding CRBs as the SNR increases. Since DMM does not
require any search over the parameter space, it is suitable for
a practical implementation. We also show that in the case of a
model mismatch, if the phase angle of the reflection coefficient
is small, the DMM can still perform better than the traditional
method for low to moderate SNR. Although the motivation for
our work has been cavity thickness measurements for supercav-

itation systems, the results of this paper are applicable to many
other proximity distance measurement applications as well.

APPENDIX A
DERIVATION OF CRBS

We outline below the derivation of CRBs for the parameter
estimates of the following data model:

(70)

where .
In (70) the additive noise vectors are

assumed to be independent zero-mean Gaussian random vec-
tors with an unknown covariance matrix. The data samples

are independent and the unknown pa-
rameters in the estimation problem are the real and imaginary
parts of (for complex-valued ) or simply the amplitude of
(for real-valued ), the time-delay and the unknown elements
of . Let be a vector containing those parameters. The CRB
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inequality states that provided the estimates are unbiased, the
covariance matrix of the estimated parameter vectorsis lower
bounded by the inverse of the Fisher information matrix .
The FIM can be computed by the extended Slepian-Bang’s for-
mula [17]:

(71)

(here denotes the derivative of with respect to theth un-
known parameter). Note that the FIM is a block diagonal matrix
since does not depend on the parameters in , and
does not depend on the elements in. Hence, the CRB of the
estimates of the delay and the amplitude can be determined from
the second term of the right side of (71).

We first derive the CRB s for the case of a complex-valued.
Let

(72)

where denotes the imaginary part of, be a vector of the
signal parameters (i.e., the parameters in the upper left block of
the FIM). Define

(73)

Im
(74)

(75)

and let

(76)

Then

(77)

which is easily evaluated numerically. If and
, simplifying (77) yields

(78)

and

(79)

Clearly, for maximal accuracy, should be as large as
possible. Note however that [cf. the remark
before (42)].

Second, we derive the CRBs for real-valued. Let

(80)

Define

(81)

(82)

Let

(83)

Then

(84)

If and , simplifying (84) yields

(85)

and

(86)

In general, the frequency difference is determined by the
maximum distance we want to measure. Therefore, once

is fixed, we can choose large and to decrease
the real CRB of . Note however that the lower real CRB we
design, the higher SNR is required to approach it.

Note that in the case when , according to (79) and
(86), the ratio of the CRBs of for complex-valued and for
real-valued is

(87)

This ratio is directly related to the ratio of the oscillation fre-
quencies of and , respectively, and therefore to the
sharpness of the peaks of and . This confirms the
heuristic reasoning in Section IV which concludes that the cost
function with the sharpest peak should give the most accurate
estimate.
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